
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1490
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Design Generic Architecture for software
Engineering “Extractor” Tool

Rashmi Yadav, Abhay Kothari, Ravindra Patel

Abstract— Software architectures capture the most significant properties and design constraints of software systems. In
our research work we intended to propose architecture for a reengineering tool. So, this paper will present a survey of
techniques that have been proposed a comprehensive technique for design reengineering tool, here emphasize only how
basic steps and architecture (extractor) for comprehensive reengineering tool on the bases of previous study, we analyze
of different reengineering tool (Dali, GUPRO, DEFCTO, IMAGIX-4D, COLUMBS) and their comparative strength, weak-
ness and suitable environment and architecture thereafter we proposed our holistic archite

Index Terms— Minimum 7 keywords are mandatory, Keywords should closely reflect the topic and should optimally characterize the
paper. Use about four key words or phrases in alphabetical order, separated by commas.

—————————— ——————————

1. INTRODUCTION
Propose objective to design the architecture of reengi-

neering tool. We studied- the available reengineering tools
to analyzes the pros and corns and develop requirement set
classify into functional and nonfunctional requirements.
Prepare a functional requirement set for proposed reengi-
neering tool. Analyze the existing tools find their merits
and demerits. The functional requirements are extractor,
repository, analyzer, visualize. Nonfunctional Require-
ments[a] are related with the quality Interoperability,
Traceability, Compatibility, Scalability, reusability, Inter-
connectivity, Reliability, Modifiability, Efficiency, and Un-
derstandability. We proposed our research objective: To
provide a graphical representation for architectural models
using Object-Oriented models. And we try to offer reverse
engineering facilities, producing Object-Oriented models
out of source code. To be capable of handling incomplete
and inconsistent information .To analyzes models for com-
pleteness and consistency. Elaboration and more strict rep-
resentation of the presented feature models. Scaling the
process for large systems by decision support by introduc-
ing metrics. Dealing with the cases of exiguous domain
knowledge. Recovery of the execution view of the architec-
ture. Development of a mechanism for the maintenance of
the collected information during the architecture recovery
process. In this paper, we will discuss reengineering Ex-
tractor Architecture and basic rules.

2. Literature Survey and Review

According to kinnle [1], extractors extract all interested fact
from artifacts and srored in the repository. There are vari-
ous artifacts software in binary form, database schemas
and data, user interfaces, reports, documentation, source
code .Merits: In this paper author are choose the source
code as an artifact because it is most important and the up-
to-date artifacts in compare to other artifacts According to
H.J.S. Basten [6], the evaluation of extractor based on the
regular expression.the limitation of regular is that are lan-

guage dependent, it cannot deal with the nested language.
It also needs more maintenance. It is cumbersome when
more complex context information example scope infor-
mation, variable qualification. Another extractor is Compil-
er instrumentation; it removes the drawback of regular ex-
pression by supporting a number of languages. The ex-
tracted facts in the form of tuples. Grammar based ap-
proach is more general it is a mechanism the grammar of a
language of interest with fact extraction directives and to
automatically generate fact extractor. Its fast extraction can
be seen as a very light-weight attribute grammar system
that only uses synthesized attributes. In attributing gram-
mar systems the further processing of facts is done using
attribute equations that define the values of synthesized
and inherited attributes. Basic facts can be described by
synthesized attributes and are propagated through the syn-
tax tree using inherited attributes. Analysis results are ul-
timately obtained as synthesized attributes of the root of
the syntax tree. In our case, the further processing of ele-
mentary facts is done by using relational techniques. Que-
ries and Relations the query imposes on the syntax tree.
The problem with this method is less expressiveness of
SQL, it is very slow. Rigi it applies the relational algebra is
used in GROK in relation manipulation Language and rela-
tional partition algebra to represent basic facts about soft-
ware system.

According to Rick Kazman [2], there is no single tool are
sufficient for the architectural extraction. Architectural
construction there is a variance in language, differenr archi-
tectural style, implementation and convention. For this
Dali proposed an open, lightweight workbench that aids an
analyst in extracting, manipulating, and interpreting archi-
tectural information. Discover the relationship between "as-
implemented" and "as designed “architectures, static ex-
traction made by two types. (i) Based on parsing (ii) Based

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1491
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

on Lexical technique. Lexical techniques are more versatile
& lightweight then parse based techniques but Lexical
techniques typically achieve lower accuracy. So there is no
one tool will successfully extract the complete source code.
If choose one method the extractor may be imperfect so the
problem if one function call or relation missed that affects
the architectural model. Author presents the solution of
this problem the composition of multiple extractions Tech-
niques will alleviate these problems by providing a con-
crete model of higher accuracy than any individual tech-
nique. If an extractor missed one function call disturb the
high-level model, however, this is a dangerous assumption
as it will not be a single function call that is missing, but
more likely a whole class of related elements or relations.
This deficiency will likely affect the architectural model.
We analyze this model and found, Merits: (i) openness
New elements must be easy to integrate into the work-
bench, and such integration should not unnecessarily im-
pact other elements of the workbench dependencies are
lightweight. (ii) Dali allows an analyst to interact with the
recovered information by assessing the results of the recon-
struction effort to see whether composite elements demon-
strate functional consistency, and by seeing places where
the as-built architecture differs from the as-designed archi-
tecture. No extraction technique is useful or complete
without user interaction. Demerits: It is not fully automat-
ed human involvement necessary for the good architecture.

Johannes Martin [3] provides tool writers with the ability to
query the compilers internal data structures for infor-
mation on the programs being compiled. It gives guideline
how these features can be used to write data extractor for
supplying data to common reverse engineering tools. C++
Programs are combination of many files. Header files that
contain the declaration of data type’s functions and global
variables and implementation files that contain the defini-
tions. These files depend on each other and implementa-
tion file that defines the instantiations of a variable of a cer-
tain data type depends on the header file with the declara-
tion of that data type. In a traditional programming envi-
ronment programmer has to keep track of the dependen-
cies of these files usually using tools such as make utility. A
traditional written parser has to process the subject pro-
gram source code sequentially breaking it up to into lexi-
graphic token and building Abstract Syntax trees (AST).
Once this is done the AST can be traversed for the obtain
information from the code. After analyzing their research
work we found, Merits: (i) Reducing the complexity of data
extractors. (ii) Less time needed to develop these as com-
pared to using traditional approaches and programming
tools.Its limitation is based on Structured Query language
that is limited in nature. Jürgen Ebert Bernt et al., proposed
GUPRO (Generic Understanding of Programs) [4] is an in-
tegrated workbench to support program understanding of
heterogeneous software systems on arbitrary levels of
granularity GUPRO is based on graph. Source code is ex-
tracted into a graph repository the abstraction is done by
graph queries and graph algorithms. This can be viewed by

an integrated querying and browsing facilities. For C-like
languages. this paper summarizes the work done on
GUPRO during the last seven years The objective of
GUPRO is to provide an integrated reverse engineering
workbench supporting multiple program analysis tech-
niques. After analyzing their research work we found,
Merits: GUPRO uses a schema-independent querying
mechanism. Demerits: Due to large software system all
facts are source cannot fill at once due to Limited reposito-
ry size. Fact extractors for multi-languages systems follow
a four step parsing approach. Step 1checks if the document
is already represented in the repository in a former version.
If so, its facts are removed. The document itself is then
parsed in a second step, in third step the extracted facts are
integrated into the existing repository, in the fourth step
ensures further integrity constraints.
Rudolf Ferenc et al. [5] a Framework “Columbus” Reverse
engineering tool” extractor is one of the components of this
tool like other re-engineering tool. The extraction process is
based on a Columbus project. A project stores the input
files (and their settings: precompiled header, prepro-
cessing, output directories, etc.) displayed in a tree-view,
which represents a real software system. The project can
simultaneously contain source files of different program-
ming languages. The process is very similar to a compiler
system. The first stage of the extraction process is data ex-
traction. Columbus takes the input files one by one and
passes them to the appropriate extractor, which then cre-
ates the corresponding internal representation file. Colum-
bus may contribute as a flexible, easily extensible tool ar-
chitecture, a data exchange model (C/C++ schema) and as
a source code analysis process. After analyzing their re-
search work we found, Merits: (i) Architecture of Colum-
bus easily extendable. (ii)It provides re-usability. DEFCTO
for fact extraction it is based on language parametric & fact
parametric. It amounts to annotating the context-free
grammar of a language of interest with fact annotation it
describes how to extract the elementary facts from the lan-
guage element .Then it uses the Relational techniques to
further enrich them and to perform the actual software
analysis. After analyzing their research work we found,
Merits: (i) DEFACTO method is considerably smaller than
other competing fact extractor method. (ii) Arbitrary factu-
al annotations can be added to the grammar; it is inde-
pendent from any preconceived analysis model and is fully
general. The method is succinct and its notational efficiency
has been demonstrated by comparison with other methods.
Demerits: This technique does not rely on a specified
grammar formalism or parser. Also, for the processing of
the extracted facts, other methods could be used as well,
ranging from Prolog to Java.
Ghulam Rasool at el. [7] ,presents a simple and lightweight
pattern extraction technique to extract different artifacts
from legacy systems using regular expression pattern spec-
ifications with multiple language support and own cus-
tom-built tool DRT to recover artifacts from existing system
at different levels of abstractions. Sanatanu Paul et al.[13],
presents a framework in which pattern language is used to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1492
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

specify interesting code features. The pattern language is
derived by extending the source the source programming
language with pattern matching symbol. It describes
SCRUPLE a finite state machine based source code search
tool that efficiently implements this framework. The
SCRUPLE Run Time system searches the source code for
matches. The program source code is transformed by a
source parser into a data structure called the AST (At-
tributed Syntax Tree) which is based on the attributed de-
pendency graph model. The pattern or query specified by
the user is transformed by a parser pattern into automation
called code pattern automation (CPA), CPA are non deter-
ments finite state automata. Alexandru Tele el at. [8], pre-
sented tool SolidFX an integrated reverse-engineering envi-
ronment (IRE) for C and C++. SolidFX was specifically de-
signed to support code parsing, fact extraction, metric
computation, and interactive visual analysis of the results
in much the same way IDEs and design tools offer for the
forward Engineering pipeline. In the design of SolidFX,
adapted and extended several existing code analysis and
data visualization techniques to render them scalable for
handling code bases of millions of lines. In this paper, the
author gave the detail several design decisions taken to
construct SolidFX. It also illustrates the application of our
tool and our lessons learnt in using it in several types of
analyses of real-world industrial code bases, including
maintainability and modularity assessments, detection of
coding patterns, and complexity analyses. It is proposed
architecture based on Elsa but remove the limitation is it
require the preprocessed input no preprocessor facts are
extracted, it can’t parse the incorrect code. The output can-
not be filtered or queried for the specific facts. After analyz-
ing their research work we found, Merits: (i) It doesn't re-
quire preprocessed input. (ii) Good in error recovery. (iii)
Output can be filtered or queried for specific
facts.Demerits:The SolidFX need for Refined static infor-
mation can be extracted from the basic facts, such as con-
trol flow and data dependency graphs, leading to more
complex and useful s safety anal. According to storey Rigi
[9]give two types of representation multiple windows,
ShriMP (Simple hierarchical Multiperspective) Rigi gives
high level abstraction .Its three main components parsing
subsystem-Parsing subsystem contains C,C++,COBOL lan-
guages repository - Repository stores the result of parsing
step. Interactive graph editor-Graph editor called “rigiedit”
gives browsing, editing, manipulating, exploring and man-
aging capabilities. Merits- Extensibility, Customization,
representation, it provides metrics for cohesion and cou-
pling, adapt different programming language, easy to use
interface. Demerits: Not user friendly. No integrated
source code editor .The parser only supports parsing func-
tions and structure data types so it only generates the struc-
ture of the software system in functional views (call graph)
and cannot generate other views such as class diagrams
and control flow. Provides limited amount of software
metrics. Unavailability of dynamic views. Reveal [10] de-
scribe, Rational Rose and ArgoUml does not define binary
class relationship they distinguish graphically association

aggregation and composition but produce incomplete rela-
tionship. In Rose aggregation is not detected .Reveal can be
useful for reverse engineering class diagrams however it
does not provide round-trip engineering. Reveal is a more
precise tool. Other tools do not use a full parse to guide the
reverse engineering process but rather use a fuzzy parse
that scans the code for keywords. It provides complete
modeling of the application,it is closer to UML standards.
This is a commercial tool released by Imagix Corporation
[11].The architecture contains three main layers that is
View, Exploration engine, Database (Imagix4D).This is a
program understanding tool for C and C++ programs. It
gives information in a 3D-graphical format. Merits: It is
having a good user interface and it is easy to use. It auto-
matically generates documentation from source-code. De-
merits of this tool are: (i) This tool cannot be extended. (ii)
Its can’t generate the graphical views that can be useful in
printed form.
Stephane Ducasse et al. [12] ,presents a tool it is a tool en-
vironment to reverse engineer or re-engineer a system. It
provides an engineering environment that allows tools to
collaborate (Moose). Moose give the requirement set for re-
engineering tool that is supported for re-engineering tasks,
Extensible, Exploratory, and Scalable. Moose uses layered
architecture. Its component is an Import/Export Frame-
work, Repository and Model Management, Services, Que-
rying and Navigation, Metrics and other Analysis support,
Grouping, Refactoring. Merits: It can store, query and nav-
igate information. Its extensibility propernhnty helps to
make it a foundation for another tool. It provides a com-
plete description of the Meta model elements In terms of
objects that are easily parameterized, extended or manipu-
lated.

3. Analysis of reengineering tool:

 I. DALI TOOL:

S.N. Merits Demerits
1 New elements must be

easy to integrate into
the workbench
(openess), and such
integration should not
unnecessarily impact
other elements of the
workbench (depend-
encies are light-
weight).

It is not fully automated
human involvement
necessary for the good
information.

2 It allows an analyst to
interact with the re-
covered information
by assessing the re-
sults of the reconstruc-
tion effort to see
whether composite
elements demonstrate
functional consistency,
and by seeing places

It is highly complex.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1493
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

where the as built ar-
chitecture differs from
the as-designed archi-
tecture.

3 No extraction tech-
nique is useful or
complete without user
interaction.

II. GUPRO TOOL:

S.no. Merits Demerits
1 It uses a schema

independent que-
rying mechanism

Due to large software system
all facts are source cannot fill
at once due to Limited repos-
itory size, fact extractors for
multi- languages systems
follow a four step parsing
approach.

III. DEFCTO TOOL

S.no.

Merits Demerits

1 Arbitrary factual
annotation can be
added to the
grammer; it is in-
dependent from
any preconceived
analysis model
and is fully gen-
eral.

This technique does not rely
on a specified grammer
formalism or parser.

2 The method is
succinct and its
notational effi-
ciency has been
demonstrated by
comparison with
other method.

IV. IMAGIX-4D

S.no. Merits Demerits

1 It helps software
developers com-
prehend complex
or legacy C, C++
and Java source
code.

The hand designed class and
function diagrams some-
times does not get match
with the tool designed dia-
grams.

2 By using Imagix
4D to reverse en-

The parser lacks of im-
portant information about

gineer and ana-
lyze our code, we
are able to speed
your develop-
ment, enhance-
ment, reuse, and
testing.

method/function calls
which is due to inability of
interpreting template pa-
rameters.

3 It eliminates bugs
due to faulty un-
derstanding.

It is unable to resolve the
function to which the invo-
cation resolves during com-
pilation time.

4 It enables us to
rapidly check or
systematically
study your soft-
ware on any level
-- from its high
level architecture
to the details of
its build, class
and functional
dependencies.

Imagix 4D requires many
hours of analysis for larger
code-bases

5 We can visually
explore a wide
range of aspects
about your soft-
ware - control
structures, data
usage, and inher-
itance. All based
on its precise
static analysis of
your source code.

Imagix 4D does not produce
a full executable slice, since
it does not perform analysis
of relevant conditions for the
identified statements.

6 Using this tool
we are able to
find and focus on
the relevant por-
tions of your
source code
through its que-
rying capabilities.

7 Automated anal-
ysis, database
lookups, and
graphical query-
ing all sift
through the
mountains of da-
ta inherent in our
source code so
we can examine
the structural and
dependency info
we are interested

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1494
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

in. Quickly and
accurately.

4. Architecture for reengineering tool:

for any software engineering phase we follows following
steps requirement, analysis ,design, and maintenance but
here we try to design reengineering phase fig.1 shows
overall structure for reengineering process.

Fig.1. Basic Reengineering Process

5. Architecture for Reengineering Extractor

On the basis of above analysis ,in this research work we
proposed a architecture ,for reengineering tool and here
we try to describe their functionality .In fig 2 present basic
object-oriented diagram for extractor ,diagram consists of
eight parts. The Parser & Scanner are abstract classes. The
parser request taken from its scanner and, it has dependen-
cy on tokens. The Scanner owns the token; it owns the
source by the source field. Scanner is one of basic part of
our basic reengineering tool; it is dependent on source
code, Parser is dependent on scanner. Symbol table is de-
pendent on passer. Scanner is dependent on token. Eof to-
ken is a subclass for token subclass. Token is dependent on
source code. This diagram show basic object-oriented
properties .This object-oriented properties help us realizing
overall architecture of any system.

Class Level Diagram for Reengineering Extractor:
In fig 3 further classify our architecture in class level archi-
tecture and identify function and its variables which help
us for realizing any system at low level design also.

Parser Class:
Parser controls the transaction process it parses the source
program and so the passer class has an abstract parser
method. It wills repeatedly the entire scanner for next to-

ken.

Fig.2. Basic Extractor Diagram

Current Token -: The parser current token.
Next token () - convenience methods in tuner call the
scanner's current token & next token () methods.
Geterrer count () - it will return the number of syntax trees.

Scanner Class:
The scanner controls taken extracted from source program.
extract token () - it will read character from source in order
to construct the tokens of current char () call the corre-
sponding methods of source class .

Token class:
In Token Class store useful information about a token in-
cluding type, string value and location (line numbers &
position) in the source program. It also has current char ()
next char () methods that will in turn call the current char (
) & next char () method of source class. Token type is lan-
guage specific and Token type interface serves as place
holder. Eof token subclass represent the end of source file,
using token subclasses will keep the scanner code modular.
Dashed arrow is a reference that exists only during a meth-
od call. A solid arrow with a closed arrow head point from
substitutes to super class a class diagram can include sec-
tions for the field and methods field name that are arrow
labels do not appear again inside the field section.

+ public ,- private # method – package

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1495
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.3. Extended Architecture of Extractors

6. Conclusion

In this research work we try to provide a architecture reen-
gineering extractor which is holistic in manner, pursue the
standard of object-oriented notation and realization of ar-
chitecture on the basis of object oriented properties of soft-
ware, which help short all limitation of existing tool which
mention above table and next section of this research work
we developed a software tool on the bases of above limita-
tion. The architecture of Extractor for reengineering tool
definitely helps software industry for convert legacy sys-
tem to newer system and reduces overall reengineering
time.

Reference

1. Holger Michael Kienle” Building Reverse Engineering

Tools with Software Components, A Dissertation of
DOCTOR OF PHILOSOPHY 1996 pages 1-360.

2. Rick Kazman S. Jeromy Carriere October 1997 Playing

Detective: Reconstructing Software Architecture from
Available Evidence Technical Report CMU/SEI-97-TR-
010 ESC-TR-97-010 DTIC QUALITY.

3. Johannes Martin, “Leveraging IBM Visual Age for C++

for Reverse engineering Tasks” Conference of the Cen-
tre for Advanced Studies on Collaborative Research
(CASCON’ 99), pages 83–95, November 1999.

4. Jürgen Ebert Bernt, Kullbach Volker and Riediger An-
dreas, Winter GUPRO Generic Understanding of Pro-
grams June 2002.

5. Rudolf Ferenc, Arpad Beszedes, Mikko Tarkiainen, and

Tibor Gyimothy. Columbus—reverse engineering tool
a schema for C++. 18th IEEE International Conference on
Software Maintenance (ICSM’02), pages 172–181, Octo-
ber 2002.

6. H.J.S. Basten and P. KLINT DEFACTO, “Language-

Parametric fact Extraction from Source Code SLE, vol-
ume 5452 of Lecture Notes in Computer Science, page
265-284. Springer, (2008)

7. Ghulam Rasool, and Ilka Philippow ,Recovering Arti-

facts from Legacy Systems using Pattern Matching
World Academy of Science, Engineering and Technol-
ogy 22 2008.

8. Alexandru Tele and Heorhiy Byelas, A Framework for

Reverse Engineering Large C++ Code Bases” Elsevier
Electronic Notes in Theoretical Computer Science 233
(2009) 143–159.

9. Tung doan, An evaluation of four reverse engineering

tools for C++applications, October 2008 University of
Tampere, Department of computer sciences M. Sc. The-
sis.

10. Sarah Matzko and Jasmes F. Power, Reveal: A tool to

Reverse engineer class diagrams, Confrence in Re-
search and Practice in Information Technology, Vol.10.

11. http://www.imagix.com

12. Stéphane Ducasse, Michele Lanza and Sander

Tichelaar “The Moose Reengineering Environment”

13. Sanatnu Paul, Atul Prakash “A framework for source

code search using program patterns” IEEE Transnac-
tion on software Engineering Vol 20 No. 6 june 1994.

14. Ilian Pashov, Matthias Riebisch, “Using Feature Model-

ing for Program Comprehension and Software Archi-
tecture Recovery “Proceedings of the 11th IEEE Inter-
national Conference and Workshop on the Engineering
of Computer-Based Systems (ECBS’04),0-7695-2125-
8/04, 2004

IJSER

http://www.ijser.org/
http://www.imagix.com/

	1. Introduction

